Exemplo de classe interna
A classe AbstractList tem uma classe interna Itr . É uma implementação da interface Iterator , que permite obter elementos de coleções um a um:
private class Itr implements Iterator<E> {
int cursor = 0;
int lastRet = -1;
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size();
}
public E next() {
checkForComodification();
try {
int i = cursor;
E next = get(i);
lastRet = i;
cursor = i + 1;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException(e);
}
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
É usado no método iterador :
public Iterator<E> iterator() {
return new Itr();
}
É assim que qualquer descendente de AbstractList obtém um iterador pronto. E se precisar personalizar o iterador, você pode implementar sua própria classe que herda Iterator ou Itr e, em seguida, substituir o método iterador . Por exemplo, é isso que a classe ArrayList faz.
A classe Itr é não estática. Como resultado, o objeto Itr tem uma referência à instância AbstractList e pode acessar seus métodos ( size , get , remove ).
Exemplo de uma classe aninhada estática
A classe Integer tem uma classe aninhada IntegerCache .
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer[] cache;
static Integer[] archivedCache;
static {
int h = 127;
String integerCacheHighPropValue =
VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
h = Math.max(parseInt(integerCacheHighPropValue), 127);
h = Math.min(h, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
}
}
high = h;
VM.initializeFromArchive(IntegerCache.class);
int size = (high - low) + 1;
if (archivedCache == null || size > archivedCache.length) {
Integer[] c = new Integer[size];
int j = low;
for(int i = 0; i < c.length; i++) {
c[i] = new Integer(j++);
}
archivedCache = c;
}
cache = archivedCache;
assert IntegerCache.high >= 127;
}
private IntegerCache() {}
}
IntegerCache encapsula a funcionalidade que cria um cache e armazena os intervalos de cache, bem como os próprios valores em cache. Assim, tudo relacionado ao cache é mantido em uma classe separada. Isso facilita a leitura e modificação do código. Código que usa a classe:
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
A classe IntegerCache não acessa campos e métodos não estáticos da classe Integer . Além disso, ele é acessado apenas no método estático valueOf . Ou seja, está vinculado à própria classe Integer , não a suas instâncias individuais. E isso significa que IntegerCache é estático.
Exemplo de uma classe interna anônima
Como exemplo de uma classe anônima, vamos pegar o InputStream e seu método estático nullInputStream :
public static InputStream nullInputStream() {
return new InputStream() {
private volatile boolean closed;
private void ensureOpen() throws IOException {
if (closed) {
throw new IOException("Stream closed");
}
}
@Override
public int available () throws IOException {
ensureOpen();
return 0;
}
@Override
public int read() throws IOException {
ensureOpen();
return -1;
}
@Override
public int read(byte[] b, int off, int len) throws IOException {
Objects.checkFromIndexSize(off, len, b.length);
if (len == 0) {
return 0;
}
ensureOpen();
return -1;
}
@Override
public byte[] readAllBytes() throws IOException {
ensureOpen();
return new byte[0];
}
@Override
public int readNBytes(byte[] b, int off, int len)throws IOException {
Objects.checkFromIndexSize(off, len, b.length);
ensureOpen();
return 0;
}
@Override
public byte[] readNBytes(int len) throws IOException {
if (len < 0) {
throw new IllegalArgumentException("len < 0");
}
ensureOpen();
return new byte[0];
}
@Override
public long skip(long n) throws IOException {
ensureOpen();
return 0L;
}
@Override
public void skipNBytes(long n) throws IOException {
ensureOpen();
if (n > 0) {
throw new EOFException();
}
}
@Override
public long transferTo(OutputStream out) throws IOException {
Objects.requireNonNull(out);
ensureOpen();
return 0L;
}
@Override
public void close() throws IOException {
closed = true;
}
};
}
O método retorna um InputStream vazio , implementado por uma classe anônima. Como a classe não deve ter descendentes, nós a tornamos anônima.
Com a adição da API Java Stream, as classes anônimas se tornaram onipresentes: todas as expressões lambda são classes anônimas que implementam alguma interface funcional. Considere alguns exemplos.
A classe AbstractStringBuilder contém o pai das famosas classes StringBuilder e StringBuffer :
@Override
public IntStream chars() {
return StreamSupport.intStream(
() -> {
byte[] val = this.value;
int count = this.count;
byte coder = this.coder;
return coder == LATIN1
? new StringLatin1.CharsSpliterator(val, 0, count, 0)
: new StringUTF16.CharsSpliterator(val, 0, count, 0);
},
Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
false);
}
A classe Files tem um para converter um Closeable em um Runnable :
private static Runnable asUncheckedRunnable(Closeable c) {
return () -> {
try {
c.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
};
}
A classe Class tem um método para obter uma representação de string de um método:
private String methodToString(String name, Class<?>[] argTypes) {
return getName() + '.' + name +
((argTypes == null || argTypes.length == 0) ?
"()" :
Arrays.stream(argTypes)
.map(c -> c == null ? "null" : c.getName())
.collect(Collectors.joining(",", "(", ")")));
}
GO TO FULL VERSION