Example of an inner class

The AbstractList class has an Itr inner class. It is an implementation of the Iterator interface, which makes it possible to get elements of collections one by one:

private class Itr implements Iterator<E> {
	int cursor = 0;
	int lastRet = -1;
	int expectedModCount = modCount;

	public boolean hasNext() {
    		return cursor != size();
	}

	public E next() {
    	checkForComodification();
    	try {
        	int i = cursor;
        	E next = get(i);
        	lastRet = i;
        	cursor = i + 1;
        	return next;
    	} catch (IndexOutOfBoundsException e) {
        	checkForComodification();
        	throw new NoSuchElementException(e);
    	}
	}

	public void remove() {
    	if (lastRet < 0)
        	throw new IllegalStateException();
    	checkForComodification();

    	try {
        	AbstractList.this.remove(lastRet);
        	if (lastRet < cursor)
            	cursor--;
        	lastRet = -1;
        	expectedModCount = modCount;
    	} catch (IndexOutOfBoundsException e) {
   	     throw new ConcurrentModificationException();
    	}
	}

	final void checkForComodification() {
    	if (modCount != expectedModCount)
        	throw new ConcurrentModificationException();
	}
}

It is used in the iterator method:

public Iterator<E> iterator() {
	return new Itr();
}

This is how any descendant of AbstractList gets a ready-made iterator. And if you need to customize the iterator, you can implement your own class that inherits Iterator or Itr, and then override the iterator method. For example, this is what the ArrayList class does.

The Itr class is non-static. As a result, the Itr object has a reference to the AbstractList instance and can access its methods (size, get, remove).

Example of a static nested class

The Integer class has an IntegerCache nested class.

private static class IntegerCache {
	static final int low = -128;
	static final int high;
	static final Integer[] cache;
	static Integer[] archivedCache;

	static {
    	int h = 127;
    	String integerCacheHighPropValue =
        	VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
    	if (integerCacheHighPropValue != null) {
        	try {
            	h = Math.max(parseInt(integerCacheHighPropValue), 127);
            	h = Math.min(h, Integer.MAX_VALUE - (-low) -1);
        	} catch( NumberFormatException nfe) {
        	}
    	}
    	high = h;

    	VM.initializeFromArchive(IntegerCache.class);
    	int size = (high - low) + 1;

    	if (archivedCache == null || size > archivedCache.length) {
        	Integer[] c = new Integer[size];
        	int j = low;
        	for(int i = 0; i < c.length; i++) {
            	c[i] = new Integer(j++);
        	}
        	archivedCache = c;
    	}
    	cache = archivedCache;
    	assert IntegerCache.high >= 127;
}

	private IntegerCache() {}
}

IntegerCache encapsulates functionality that creates a cache and stores the cache ranges as well as the cached values themselves. Thus, everything related to the cache is kept in a separate class. This makes it easier to read and modify the code. Code that uses the class:

public static Integer valueOf(int i) {
	if (i >= IntegerCache.low && i <= IntegerCache.high)
    		return IntegerCache.cache[i + (-IntegerCache.low)];
	return new Integer(i);
}

The IntegerCache class does not access non-static fields and methods of the Integer class. Additionally, it is accessed only in the static valueOf method. That is, it is bound to the Integer class itself, not to its individual instances. And that means IntegerCache is static.

Example of an anonymous inner class

As an example of an anonymous class, let's take the InputStream and its static nullInputStream method:

public static InputStream nullInputStream() {
    return new InputStream() {
    	private volatile boolean closed;

    	private void ensureOpen() throws IOException {
        	if (closed) {
            		throw new IOException("Stream closed");
        	}
    	}

    	@Override
    	public int available () throws IOException {
        	ensureOpen();
        	return 0;
    	}

    	@Override
    	public int read() throws IOException {
        	ensureOpen();
        	return -1;
    	}

    	@Override
    	public int read(byte[] b, int off, int len) throws IOException {
        	Objects.checkFromIndexSize(off, len, b.length);
        	if (len == 0) {
            		return 0;
        	}
        	ensureOpen();
        	return -1;
    	}

    	@Override
    	public byte[] readAllBytes() throws IOException {
        	ensureOpen();
        	return new byte[0];
    	}

    	@Override
    	public int readNBytes(byte[] b, int off, int len)throws IOException {
        	Objects.checkFromIndexSize(off, len, b.length);
        	ensureOpen();
        	return 0;
    	}

    	@Override
   	 public byte[] readNBytes(int len) throws IOException {
        	if (len < 0) {
            		throw new IllegalArgumentException("len < 0");
        	}
        	ensureOpen();
        	return new byte[0];
    	}

    	@Override
    	public long skip(long n) throws IOException {
        	ensureOpen();
        	return 0L;
    	}

    	@Override
    	public void skipNBytes(long n) throws IOException {
        	ensureOpen();
        	if (n > 0) {
            		throw new EOFException();
        	}
    	}

    	@Override
    	public long transferTo(OutputStream out) throws IOException {
        	Objects.requireNonNull(out);
        	ensureOpen();
        	return 0L;
    	}

    	@Override
    	public void close() throws IOException {
        	closed = true;
    	}
    };
}

The method returns an empty InputStream, implemented by an anonymous class. Because the class is not supposed to have descendants, we made it anonymous.

With the addition of the Java Stream API, anonymous classes have become ubiquitous: all lambda expressions are anonymous classes that implement some functional interface. Consider some examples.

The AbstractStringBuilder class contains the parent of the famous StringBuilder and StringBuffer classes:

@Override
public IntStream chars() {
	return StreamSupport.intStream(
        	() -> {
            	byte[] val = this.value;
            	int count = this.count;
            	byte coder = this.coder;
            	return coder == LATIN1
                   	? new StringLatin1.CharsSpliterator(val, 0, count, 0)
                   	: new StringUTF16.CharsSpliterator(val, 0, count, 0);
        	},
        	Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
        	false);
}

The Files class has a for converting a Closeable to a Runnable:

private static Runnable asUncheckedRunnable(Closeable c) {
	return () -> {
    	try {
        	c.close();
    	} catch (IOException e) {
        	throw new UncheckedIOException(e);
    	}
	};
}

The Class class has a method for getting a string representation of a method:

private String methodToString(String name, Class<?>[] argTypes) {
	return getName() + '.' + name +
        	((argTypes == null || argTypes.length == 0) ?
        	"()" :
        	Arrays.stream(argTypes)
        	        .map(c -> c == null ? "null" : c.getName())
                	.collect(Collectors.joining(",", "(", ")")));
}