Before you start coding to teach a computer to solve a specific problem, you would normally need to make sense of the problem yourself, find a solution, and only then teach a computer to deal with it. Computational thinking is a method to make this process faster and easier, but it isn’t limited just to programming and can be applied to various parts of our life.

Computational Thinking (CT) is a concept that industry experts call a ‘code to success’ and ‘vital skill’. Even though it is relatively simple, CT can be helpful far beyond just software programming. The term was first proposed in 1980 by Seymour Papert, a mathematician and computer scientist, as a way to solve various programming-related problems and tasks more efficiently.

CT is a set of methods that involves taking a complex problem and breaking it down into a series of smaller problems that are easier to manage, as well as expressing the essence of a problem and the solution in ways that a computer could execute.

How Computational Thinking works?

Computational Thinking as a technique consists of four main methods, which are decomposition, generalization/abstraction, pattern recognition / data representation, and algorithms. They are all equally important and effective when applied (to a problem) in the right order.


You start with decomposition, which is separating a problem into a number of smaller problems that are easier to solve one by one.

Abstraction (generalization)

Then you proceed to a specific task/problem, focusing exclusively on the information that is important to solve it and ignoring all the rest.

Pattern recognition (data representation)

Next step is looking for similarities between the problem you are currently working on and other problems that have been solved previously (with the solution available). The goal is to find patterns that can be applied to your current task.


And finally, having the results of applying previous steps in place, you develop an algorithm for a step-by-step problem solution. An algorithm then can be executed by a computer (or your brain, which is the ultimate computer solving tasks in your life).

Using Computational Thinking

Knowing how to use CT when dealing with issues and tasks the majority of software developers deal with on a regular basis can be extremely helpful throughout your career in coding.

Here’s a quick guide on how to start applying computational thinking to either coding tasks or pretty much any serious problems you might be dealing with in your personal life.

Applying decomposition

Decomposition is quite a simple but powerful technique, which can help you to deal with problems/tasks that seem too complex at first glance, and thus often cause procrastination and other difficulties. The key here is to train your brain to use decomposition on a regular basis, dividing a task to a number of smaller tasks that are easier to solve. Even though decomposition may seem like a very simple and even obvious method, you’d be surprised how many people are not aware of it, which makes it so much more difficult for them to start working on big, global tasks (like learning Java, for example).

Applying abstraction

Knowing how to apply abstraction is a powerful ability if you know the technique and have trained your brain to use it unconsciously. Abstraction is about focusing exclusively on the information that is required to solve the task while ignoring everything else. Used in combination with decomposition, it is basically the method to approach pretty much any problem or issue in your life. When dealing with strictly programming tasks, abstraction helps to concentrate and avoid your brain being exhausted too quickly.

Applying pattern recognition

Pattern recognition is quite an important skill in coding, as it allows you to solve tasks much faster by applying thinking patterns that your brain is familiar with and comfortable using. It is also a powerful technique to apply to general life problems: just try to analyze any issues you are facing in your life and find (and borrow) patterns from those parts of your life that work satisfactory, transferring them to the current problem.

Applying algorithms

When you think about it, our life is all about forming algorithms. We call them habits. Our brain tends to rely on habits every single day, just because it is more efficient and thus, practical. The only problem is most of us tend to do this unconsciously, which often results in forming wrong and harmful algorithms (we call them bad habits or addictions). Knowing how to form useful algorithms consciously can be an extremely beneficial life skill, allowing you to achieve your goals and be successful. When it comes to programming, knowing how to form an algorithm to solve a particular problem in the most quick and efficient way is what differentiates a person who just knows how to code from an experienced professional computer programmer.